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The Euclidean Scattering Transform
Graph and Manifold Scattering
Incorporating Learning
Application to drug discovery
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The (Euclidean) Scattering Transform - S. Mallat (2012)

Overview:
Model of Convolutional Neural Networks.
Predefined (wavelet) filters.

Advantages:
Provable stability and invariance properties.
Very good numerical results in certain situations.
Needs less training data.
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Example Task: Image Classification

CNNs are commonly used for image classification
You have 5000 photos of cats and 5000 photos of dogs.
Given a new image, how do you decide if its a cat or a dog?
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Scattering is an Embedding

Deep Neural Networks consist of an embedding an a classifier
An embedding (front end) creates a hidden representation of
each input in some high-dimensional vector space

x 7→ h(x) = (hi(x))H
i=1

The classifier (back end) then makes the final prediction
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The Wavelet Transform
Definition:

Wj f (x) = (ψj ⋆ f )(x),
ψj(x) = 1

2j ψ
(

x
2j

)
for some mean zero “mother wavelet” ψ.

Properties
Collects information at different scales of resolution or
frequency bands
Heuristic: supp(ψ̂j) ≈ [2−ja, 2−jb]
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Wavelets Sparsify Natural Images
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The Scattering Transform

The Scattering Transform:
Multilayered cascade of nonlinear measurements.
Each “layer” uses a wavelet transform WJ and a nonlinearity,
Uj f (x) = σ((ψj ⋆ f )(x)), j ≤ J , σ(x) = M(x) = |x |.
Uj1,j2f (x) = Uj2Uj1f (x)
Uj1,...,jm f (x) = Ujm . . .Uj1f (x)
Sj1,...jm f (x) = ϕJ ⋆ Uj1,...,jm f (x), ϕJ(x) = 1

2J ϕ
(

x
2J

)
, or,

S̄j1,...jm f = ∥Uj1,...,jm f ∥1.
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Why a Nonlinear Structure?
A good representation should be:

Stable on L2

Invariant to translations (or rotations etc.)
Sufficiently descriptive

The limits of linearity:
A linear network can be invariant or descriptive, but not both.

f̂ (0) =
∫
Rd f (x)dx is invariant, but throws away all

high-frequency information.
Filters which focus in on high-frequency information are
unstable to translations.

The wavelet transform captures high-frequency information, and
the modulus pushes this information down to lower frequencies.
Theorem (Mallat 2012)
Scattering is stable on L2 and invariant to translations.
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Limited Data Environment - Scattering for Stylometry

Which one is a Van Gogh?
Scattering Transform and Sparse Linear Classifiers for Art
Authentication (Leonarduzzi, Liu, and Wang)
Dataset of 64 real Van Gogh’s and 15 fakes.
Scattering achieves state-of-the-art (96%) accuracy.
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Scattering for Quantum Chemistry
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Same Power Spectrum, Different Scattering
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Synthesis of random textures
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Geometric deep learning

Popular Network Architectures Leverage the Structure of the Data

Examples

Recurrent Neural Nets: Convolutional Nerual Nets:

Both Sequences and Images have a Euclidean grid-like structure

Question: Can we extend these insights to data with a
non-Euclidean structure such as graphs and manifolds?
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Geometric Scattering

Geometric Wavelets
Probabilistic Methods: Heat semi-group on a manifold or
random walk on a graph.
Spectral Methods: Eigenfunctions / eigenvectors of an
appropriate Laplacian.
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Geometric Wavelets vs GCN style filters

GCN Style Filters
Take averages over local neighborhoods - promote smoothness
Low-pass filter

Wavelets
Detects changes at different scales

How is my four-step neighborhood different than my two-step
neighborhood?

Band-pass filter
Capture long range interactions
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Spatial Geometric Wavelets

Definition
Let X be a graph or a manifold and let {Pt}t≥0 be the
heat-semigroup or random walk diffusion. For 0 ≤ j ≤ J , let

Ψ(2)
j = P2j+1 − P2j , Φ(2)

J = P2J+1 ,

Theorem: P., Gao, Wolf, Hirn
W(2)

J is a non-expansive frame on a suitable weighted space, i.e.,

c∥f ∥2 ≤
∑

j
∥Ψ(2)

j f ∥2 + ∥Φ(2)
J f ∥2 ≤ ∥f ∥2.

Remark
Subsequent work with Tong et. al showed that dyadic scales are
unnecessary and the same result holds with any sequence of
increasing scales. Moreover, one may learn the scales through data.
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Spectral Convolution

Generalized Fourier Multiplication
Let L be the Laplace-Beltrami operator or graph Laplacian with
eigenbasis {φk}, Lφk = λkφk . A spectral convolution operator has
the form

Tf =
∞∑

k=0
hk⟨f , φk⟩φk .

This notion of convolution is used in many popular Graph Neural
Networks such as ChebNet (Defferrard et al. 2016)

Spectral filters
T is called a spectral filter if hk = h(λk)

Spectral Representation of the Heat Semigroup

Pt f (x) =
∞∑

k=0
g(λk)t⟨f , φk⟩φk , g(λ) = e−λ
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Equivariant Filters

Theorem: (P., Gao, W., Hirn)
Spectral filters commute with isometries.
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Spectral Wavelets

Definition

W(1)
J f (x) = {Ψ(1)

j f (x),Φ(1)
J f (x)}0≤j≤J ,

where Φ(1)
J = P2J , g(λ) = e−λ and

Ψ(1)
j f = (P2j+1 − P2j )1/2 f =

∞∑
k=0

[g(λk)2j+1 − g(λk)2j ]1/2⟨f , φk⟩φk .

Theorem: P., Gao, Wolf, Hirn
W(1)

J is an isometry, i.e.,∑
j

∥Ψ(1)
j f ∥2 + ∥Φ(1)

J f ∥2 = ∥f ∥2.
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Wavelets on the Faust Dataset
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Theoretical Guarantees Manifold Scattering

Theorem (P. Gao, Wolf, Hirn)

∥Sf1 − Sf2∥ ≤ ∥f1 − f2∥, ∀f1, f2 ∈ L2(M).

Theorem (P. Gao, Wolf, Hirn)
Let ζ be an isometry, Vζ f (x) = f (ζ−1(x)).

∥Sf − SVζ f ∥ = O
(
2−dJ

)
∀f ∈ L2(M) .

Theorem (P. Gao, Wolf, Hirn)
Let ζ be an diffeomorphism, and assume f is bandlimited (finitely
many non-zero Fourier coefficients). Then

∥Sf − SVζ f ∥ = O
(
2−dJ

)
+ O

(
λd

maxd(ζ, Isom)
)
.

Theorem (P., Gao, Wolf, Hirn)
Similar results hold for graph scattering.
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Manifold Scattering Results

Example (Spherical MNIST)
MNIST digits projected on the sphere:

Single manifold, multiple signals
95% classification accuracy from scattering features

23 Perlmutter(UCLA) Geometric Scattering



Manifold Scattering Results

Example (FAUST dataset)
Ten people in ten different poses:

Mesh grids & Shot features (Tombari et al., 2010; Prakya et
al.,2015)

Accuracy: 81% person recognition, 95% pose classification
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Graph Scattering Results

Impact of training size & feature-space dimensionality 1:

1Demonstrated on ENZYMES dataset (Borgwardt et al., Bioinformatics
2005)
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Semi-Supervised Node Classification

Setup
- Entire Graph Structure is

known (all Vertices and
Edges)

- Node feature matrix
X = X 0 = (x1, . . . , xF ) is
known for all nodes

- Labels are known for some
nodes (≤5%)

- Goal: Predict the labels of
the remaining nodes. Figure: Visualizations of Common

Data sets
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Graph Convolutional Network (Kipf and Welling)
Layer-Wise Update Rule

Sequentially transform node features via layerwise updates

X t+1 = σ(ÂX tΘ)

Θ ∈ RFt×Ft+1 is a trainable weight matrix.
Â is a local averaging operator.
Promotes smoothness, i.e. similarity amongst neighbors
Θ is learned but Â is designed (as a low-degree polynomial of
the graph Laplacian).

Low-pass filter
Multiplying by Â leaves bottom eigenvector unchanged.
All other frequencies are depressed.
Repeated applications increasingly depress high-frequencies.
“Deep” Graph Neural Nets typically use 2 layers.
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Discriminative Power

When can a network tell two nodes apart?
Necessary condition: The network learns different
representations of the two nodes
Lots of work on the analogous problem for graph classification

GCN ≲ Weisfeiler-Lehman Kernel
Little work for node classification
Do GCNs rely on informative features? Or can they learn from
the geometry of the graph?

Theorem (Wenkel, Min, Hirn, P., and Wolf (2022))
There are situations where GCN provably not discriminate two
nodes if their local neighborhoods have the same structure
Graph Scattering can discriminate some of those nodes
Thus GCN-Scattering Hybrid networks have more
discriminative power than pure GCN networks.
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Limitations of GCN

Intrinsic Node Features
A node feature x is called intrinsic is called K -intrinsic if
x(v) = x(v ′) whenever the K -step neighborhood of v is isomorphic
to the K -step neighborhood of v ′.

Examples:
d(v) = degree(v) is 1-intrinsic
t(K)(v) =Number of triangles in K -steb neighborhood of v is
K -intrinsic

Theorem (Wenkel, Min, Hirn, P., and Wolf (2022))
If the K + L-step neighborhoods of v and v ′ are isomorphic and all
node features are K-intrinsic, then an L-layer GCN can’t
discriminate v and v ′.
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Scattering Can Help

Structural differences
Suppose the K + L-step neighborhood of v is isomorphic to
the K + L-step neighborhood of v ′ under a mapping v ′

let X be a K -intrinsic feature matrix and let u be in the
K + L step-neighborhood of v .
We say a structural difference manifests at u if
X [u] ̸= X [ϕ(u)]

Theorem (Wenkel, Min, Hirn, P., and Wolf (2022))
If there is a structural difference, in the K + L neighborhood of v,
then (except in certain pathological cases) scattering can
discriminate v and v ′.
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INCORPORATING LEARNING

Scattering helps us understand GNNs and
a theoretical level
Let’s use this understanding to build
(trained) GNNs incorporating the
principals of scattering
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Scattering GCN Hybrid

Scattering Channels
Layer-wise update rule:

X ℓ
sct := σ

(
(P2J+1 − P2J )X ℓ−1Θ

)
.

Hybrid Network
Wenkel, Min, Hirn, P., and Wolf (2022) use both GCN
channels and Scattering channels of each layer.
GCN channels focus on low-frequency information.
Scattering Channels retain high-frequency information.
Can use an attention mechanism to balance channel ratios.
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Hybrid Network Results
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Hybrid Network Results
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Scattering Attention Network

Attention Mechanism

Xℓ = C−1σ̃

( Clow∑
j=1

αℓ
low,j ⊙ X̄ℓ

low,j +
Cband∑
j=1

αℓ
band,j ⊙ X̄ℓ

band,j

)
C = Clow + Chigh, α⊙ X = diag(α)X
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Attention Network Results
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LEGS - Learning the Scales
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Graph Generation

Problem:
Given a dataset of graphs, can you generate a new graph that
looks like it was a member of the original dataset
Motivating Application - Drug Development

38 Perlmutter(UCLA) Geometric Scattering



Encoding robust representation for graph generation
(Zou and Lerman 2019)

Encoder E = Graph Scattering Transform
Decoder D = Fully Connected Network
D ◦ E = Id
Generate new graphs by adding noise in latent space

Figure: Scattering Encoder-Decoder Network
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Molecular Graph Generation via Geometric Scattering
(GRASSY) - Bhaskar, Grady, P., Krishnaswamy

Figure: GRaph Scattering SYnthesis network
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Results
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Conclusion

The Euclidean scattering transform is a model of CNNs.
Provable Stability / Invariance Guarantees
Designed filters - useful for low-data environments
Can be used to synthesize textures

Geometric Versions for Graphs and Manifolds
Similar theoretical guarantees to the Euclidean scattering
transform
Wavelets can be constructed either spatially or spectrally
Can be incorporated in hybrid Scattering - GCN networks

The graph scattering transform can be used to synthesize
molecules as part of the GRASSY framework
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THANK YOU!
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