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o The Euclidean Scattering Transform
o Graph and Manifold Scattering
o Incorporating Learning

o Application to drug discovery
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The (Euclidean) Scattering Transform - S. Mallat (2012)

Overview:

o Model of Convolutional Neural Networks.

o Predefined (wavelet) filters.

o Provable stability and invariance properties.
o Very good numerical results in certain situations.

o Needs less training data.
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Example Task: Image Classification

@ CNNs are commonly used for image classification
@ You have 5000 photos of cats and 5000 photos of dogs.

o Given a new image, how do you decide if its a cat or a dog?
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Scattering is an Embedding

@ Deep Neural Networks consist of an embedding an a classifier

e An embedding (front end) creates a hidden representation of
each input in some high-dimensional vector space

x = h(x) = (hi(x)),

e The classifier (back end) then makes the final prediction

5 Perlmutter(UCLA)

Geometric Scattering



The Wavelet Transform

o Wif(x) = (¢ * f)(x),

o Yi(x) = 2 (%) for some mean zero “mother wavelet” .

Properties

@ Collects information at different scales of resolution or
frequency bands

o Heuristic: supp(t);) ~ [277a,277b]
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Wavelets Sparsify Natural Images
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The Scattering Transform

The Scattering Transform:

Multilayered cascade of nonlinear measurements.

Each “layer” uses a wavelet transform W, and a nonlinearity,
Uif(x) = o((j x F)(x)), S < J,  o(x) = M(x) = [x].

Up o (x) = Up Up f(x)
Up,..jnf(x) = U, ... Uy f(x)
Sireinf(X) = 0% Uy _jnf(x), 64(x) = 20 (%), or,
~§J'17~~~jmf = ||Uj17~~Jmf||1-

‘f*¢jl’ *% Hf*w]l‘ *wjz‘*%

____________________________________________________________________
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Why a Nonlinear Structure?

A good representation should be:

o Stable on L2
o Invariant to translations (or rotations etc.)

o Sufficiently descriptive

The limits of linearity:
A linear network can be invariant or descriptive, but not both.

o £(0) = Jga f(x)dx is invariant, but throws away all
high-frequency information.

@ Filters which focus in on high-frequency information are
unstable to translations.

The wavelet transform captures high-frequency information, and
the modulus pushes this information down to lower frequencies.

Theorem (Mallat 2012)

Scattering is stable on L? and invariant to translations.
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Limited Data Environment - Scattering for Stylometry

Which one is a Van Gogh?

@ Scattering Transform and Sparse Linear Classifiers for Art
Authentication (Leonarduzzi, Liu, and Wang)

@ Dataset of 64 real Van Gogh'’s and 15 fakes.

o Scattering achieves state-of-the-art (96%) accuracy.
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Scattering for Quantum Chemistry

Wavelets

Schrodinger

(n,I,m)
(3,0,0) (3,1,0) (3,2,0)

3s 3p 3d
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Same Power Spectrum, Different Scattering

Figure 9: Two different textures having the same Fourier power spectrum. (a) Textures X(u). Top:
Brodatz texture. Bottom: Gaussian process. (b) Same estimated power spectrum RX(w). (c) Nearly
same scattering coefficients Sy[p] X for m = 1 and 27 equal to the image width. (d) Different scattering
coefficients Sy [p]X for m = 2.
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Synthesis of random textures

(@) () © (@

(a): Original texture. (b): texture synthesized with wavelet 12 norms. (¢): synthesized with
wavelet 1! norms. (d): synthesized with scattering coefficients.
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Geometric deep learning

Popular Network Architectures Leverage the Structure of the Data

Examples

Recurrent Neural Nets: Convolutional Nerual Nets:

Subsampiing Convolutions  Subsampiing Fully connected

Both Sequences and Images have a Euclidean grid-like structure

Question: Can we extend these insights to data with a
non-Euclidean structure such as graphs and manifolds?
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Geometric Scattering

Geometric Wavelets
@ Probabilistic Methods: Heat semi-group on a manifold or
random walk on a graph.
@ Spectral Methods: Eigenfunctions / eigenvectors of an
appropriate Laplacian.
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Geometric Wavelets vs GCN style filters

GCN Style Filters

@ Take averages over local neighborhoods - promote smoothness

o Low-pass filter

@ Detects changes at different scales

o How is my four-step neighborhood different than my two-step
neighborhood?

@ Band-pass filter

@ Capture long range interactions

oA A A3
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Spatial Geometric Wavelets

Definition
Let X' be a graph or a manifold and let {P;};>¢ be the
heat-semigroup or random walk diffusion. For 0 < j < J, let

WJ('Q) = Pyi1 — Py, ¢_(/2) = Py,

Theorem: P., Gao, Wolf, Hirn

Wﬁz) is a non-expansive frame on a suitable weighted space, i.e.,

2 2
cllfI? < STV + 077 < |17
J

Remark

Subsequent work with Tong et. al showed that dyadic scales are
unnecessary and the same result holds with any sequence of
increasing scales. Moreover, one may learn the scales through data.
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Spectral Convolution

Generalized Fourier Multiplication

Let L be the Laplace-Beltrami operator or graph Laplacian with

eigenbasis {pk}, Lok = A\kpk. A spectral convolution operator has
the form

TF = hel{f, pr)px
k=0

This notion of convolution is used in many popular Graph Neural
Networks such as ChebNet (Defferrard et al. 2016)

Spectral filters

T is called a spectral filter if hx = h(\k)

Spectral Representation of the Heat Semigroup

P = 3 ) Froon g0 = e
k=0
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Theorem: (P., Gao, W., Hirn)

Spectral filters commute with isometries.
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Spectral Wavelets

W F(x) = (W F(x), 8P F(x) Yo,

where ¢( ) = = Py, g(A) = e and

WIF = (P — Py)2 F = 3 [e(M)? " — g2 1VA(F, oi)ore

Theorem: P., Gao, Wolf, Hirn

|

WS ) is an isometry, i.e.,

1
Z D)2+ o 12 = 1712
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Wavelets on the Faust Dataset
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Theoretical Guarantees Manifold Scattering

Theorem (P. Gao, Wolf, Hirn)

ISfi— SH|| < ||h — K, VA, €L} (M).

Theorem (P. Gao, Wolf, Hirn)

Let ¢ be an isometry, V. f(x) = f(¢71(x)).
ISf = SVef =0 (27%)  ¥f eL2(M) .

Theorem (P. Gao, Wolf, Hirn)

Let ¢ be an diffeomorphism, and assume f is bandlimited (finitely
many non-zero Fourier coefficients). Then

|SF = SVef | = 0 (27%) + O (Adard(C, Isom)).

Theorem (P., Gao, Wolf, Hirn)

Similar results hold for graph scattering.
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Manifold Scattering Results

23

Example (Spherical MNIST)
MNIST digits projected on the sphere:

@ Single manifold, multiple signals

@ 95% classification accuracy from scattering features
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Manifold Scattering Results

Example (FAUST dataset)

Ten people in ten different poses:

@ Mesh grids & Shot features (Tombari et al., 2010; Prakya et
al.2015)

@ Accuracy: 81% person recognition, 95% pose classification
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Graph Scattering Results

COLLAB IMDB-B TMDB-M REDDITB REDDIT-SK REDDIT-12K
WL [ 7782 L 145 | 71.60 £5.16 NA TEB2 L 201 | 5077 £2.02 | 3457 L132 () g
Graphlet | 73.42 £ 2.43 | 65.40 £ 5.95 N/A 77.26 £2.34 | 30.75+1.36 | 25.908+1.20 (|2
WL-OA | 80.70 £0.10 NIA NA 89.30 % 0.30 NA NIA T
DGK | 73.00 £0.20 | 66.00 +0.50 | 44.50£0.50 | 78.00 £0.30 | 41.20+0.10 | 32.20+0.10 |J &
DGCNN [ 73.76 £0.40 | 70.03 £ 0.86 | 47.83 £ 0.85 NA 1870 £ 4.54 NA
71.33 £ 1.96 | 70.40 £ 3.85 N/A 80.1241.70 | 5221 £244 | 4813147 || ¥
PSCN (k = 10) | 72.60 £2.15 | 71.00 £2.20 | 45.23+2.84 | 86.30 £ 1.58 | 49.10 £ 0.70 | 41.32+0.42 || =
GCAPS-CNN | 77.71£251 | 71.69+£340 | 48.50+4.10 | 87.61£251 | 50.10 £ 1.72 NIA E
SISPPNN | 81751 0.80 | 73.80 £0.70 | 51.19 £0.50 | 86.50 £0.80 | 5228+ 0.50 | 4247+ 0.0 |[Z
GIN-0 (MLP-SUM) | 80.20 £1.90 | 75.10 £5.10 | 52.30 £ 2.80 | 92.40 £ 2.50 | 57.50 = 1.50 NIA
Gs-svM [ T0.04 £ 1.61 | 7120 £3.95 | 48.73 £ 2.32 | 80.65 £ 1.04 | 53.93 £ 1.37 | 45.03 £ 1.25

Impact of training size & feature-space dimensionality !:
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_— Scattering PCA dimension
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o
L

for test
variance
B classfication accuracy

'Demonstrated on ENZYMES dataset (Borgwardt et al., Bioinformatics
2005)
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Semi-Supervised Node Classification

- Entire Graph Structure is
known (all Vertices and
Edges)

- Node feature matrix
X:XOZ(Xl,...,XF) is
known for all nodes

- Labels are known for some
nodes (<5%)

- Goal: Predict the labels of
the remaining nodes.

(c) PubMed (d) Wiki-CS

Figure: Visualizations of Common
Data sets
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Graph Convolutional Network (Kipf and Welling)

Layer-Wise Update Rule

@ Sequentially transform node features via layerwise updates
Xt = 5(AXO)

o © € RFtxFri1 s a trainable weight matrix.
o Ais a local averaging operator.
@ Promotes smoothness, i.e. similarity amongst neighbors

o O is learned but A is designed (as a low-degree polynomial of
the graph Laplacian).

Low-pass filter

o Multiplying by A leaves bottom eigenvector unchanged.
o All other frequencies are depressed.
@ Repeated applications increasingly depress high-frequencies.

@ “Deep” Graph Neural Nets typically use 2 layers.



Discriminative Power

When can a network tell two nodes apart?

@ Necessary condition: The network learns different
representations of the two nodes
@ Lots of work on the analogous problem for graph classification
o GCN < Weisfeiler-Lehman Kernel
o Little work for node classification

@ Do GCNs rely on informative features? Or can they learn from
the geometry of the graph?

Theorem (Wenkel, Min, Hirn, P., and Wolf (2022))

@ There are situations where GCN provably not discriminate two
nodes if their local neighborhoods have the same structure

@ Graph Scattering can discriminate some of those nodes

@ Thus GCN-Scattering Hybrid networks have more
discriminative power than pure GCN networks.

28 Perlmutter(UCLA) Geometric Scattering



Limitations of GCN

Intrinsic Node Features

A node feature x is called intrinsic is called K-intrinsic if
x(v) = x(v') whenever the K-step neighborhood of v is isomorphic
to the K-step neighborhood of Vv'.

Examples:
o d(v) = degree(v) is l-intrinsic
o t(K)(v) =Number of triangles in K-steb neighborhood of v is
K-intrinsic

Theorem (Wenkel, Min, Hirn, P., and Wolf (2022))

If the K + L-step neighborhoods of v and v’ are isomorphic and all
node features are K-intrinsic, then an L-layer GCN can't
discriminate v and v'.
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Scattering Can Help

@ Suppose the K + L-step neighborhood of v is isomorphic to
the K + L-step neighborhood of v/ under a mapping v/

@ let X be a K-intrinsic feature matrix and let u be in the
K + L step-neighborhood of v.

@ We say a structural difference manifests at v if

X[u] # X[¢(u)]

Theorem (Wenkel, Min, Hirn, P., and Wolf (2022))

If there is a structural difference, in the K + L neighborhood of v,

then (except in certain pathological cases) scattering can
discriminate v and v'.
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INCORPORATING LEARNING

o Scattering helps us understand GNNs and
a theoretical level

o Let's use this understanding to build
(trained) GNNs incorporating the
principals of scattering
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Scattering GCN Hybrid

Scattering Channels

Layer-wise update rule:

sct T

Hybrid Network
o Wenkel, Min, Hirn, P., and Wolf (2022) use both GCN
channels and Scattering channels of each layer.

Xl =0 (PP = PP)x"0).

@ GCN channels focus on low-frequency information.
@ Scattering Channels retain high-frequency information.

@ Can use an attention mechanism to balance channel ratios.
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Hybrid Network Results

Model Citeseer Cora Pubmed DBLP
Sc-GCN (ours) 717 §1.2 79.4 815
GAT [10] 72.5 83.0 79.0 66.1
Partially absorbing [9] 71.2 81.7 79.2 56.9
GCN [5] 70.3 815 79.0 59.3
Chebyshev [28] 69.8 78.1 744 57.3
Label Propagation [38] 58.2 77.3 71.0 53.0
Graph scattering [14] 67.5 81.9 69.8 69.4
Node features (SVM) 61.1 58.0 499 48.2
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Hybrid Network Results
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Scattering Attention Network

Attention Mechanism

’ 1 Clow ’ ) Cband ’ =
X" =C U(Z Alow,j © X|0WJ =+ Z Qpand,j © Xband,j)
j=1 j=1

C = Gow + Chigha a®X= diag(a)x
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Attention Network Results

Dataset Classes | Nodes | Edges | Homophily || GCN | GAT || Sc-GCN | GSAN
Texas 5 183 295 0.11 59.5 58.4 60.3 60.5
Chameleon 5 2,277 31,421 0.23 28.2 429 51.2 61.2
CoraFull 70 19,793 | 63,421 0.57 62.2 51.9 62.5 64.5
Wiki-CS 10 11,701 | 216,123 0.65 77.2 77.7 78.1 78.6
Citeseer 6 3,327 4,676 0.74 70.3 725 71.7 71.3
Pubmed 3 19,717 | 44,327 0.80 79.0 79.0 79.4 79.8
Cora 7 2,708 5,276 0.81 815 83.0 84.2 84.0
DBLP 4 17,716 | 52,867 0.83 59.3 66.1 81.5 84.3
104 ]
£|5 100 J
HE
LI —_—
@
£
I Toot 1
=l 3
g3
1074 1
10-% 1
DBLP Chameleon Citeseer WikiC$§

Fig. 6. Distribution of attention ratios per node between band-pass
(scattering) and low-pass (GCN) channels across all heads for DBLP,
Chameleon, Citeseer, and WIkiCS.
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LEGS - Learning the Scales

a) Geometric Scattering B =Fixed

i -1 j
P=(DW+D/2VX o rinable

Wi=pH-pi
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Graph Generation

Problem:

o Given a dataset of graphs, can you generate a new graph that
looks like it was a member of the original dataset

o Motivating Application - Drug Development

4
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Encoding robust representation for graph generation

(Zou and Lerman 2019)

graph
samples

seattering
transform
+
Gaussianize

Rl

latent
representations

. .‘:
s

Encoder E = Graph Scattering Transform

Decoder D = Fully Connected Network

DoE=Id

Generate new graphs by adding noise in latent space

edge

Pl weights
D,
e
L . vertex
9wt features
Dy

Figure: Scattering Encoder-Decoder Network
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Molecular Graph Generation via Geometric Scattering

(GRASSY) - Bhaskar, Grady, P., Krishnaswamy

Property Prediction
¥

Latant Space

!
09>

Scattering Moments
S

%%mm —

2‘:’60‘ Layeis |3} ]

%Fuuy Connected Layer

G G

Molecule Generation

Discriminator
D)

Figure: GRaph Scattering SYnthesis network
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Results

Table 2. Molecule generation performance on ZINC dataset

Measure ZINC Models
Tranche GRASSY GraphAF MolGAN (A =0) MolGAN (A =1) MegaMolBART*
BBAB 1.0 1.0 0.93 0.86 0.88
Validity FBAB 1.0 1.0 0.90 0.71 0.96
JBCD 1.0 1.0 0.84 0.63 0.99
BBAB 0.86 0.98 0.07 0.11 0.43
Uniqueness FBAB 0.91 1.0 0.04 0.03 0.41
JBCD 0.87 1.0 0.05 0.04 0.37
BBAB 1.0 1.0 1.0 1.0 0.22
Novelty FBAB 1.0 1.0 L0 L0 0.15
JBCD 1.0 1.0 L0 L0 0.19
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Conclusion

@ The Euclidean scattering transform is a model of CNNs.
o Provable Stability / Invariance Guarantees
o Designed filters - useful for low-data environments
o Can be used to synthesize textures

@ Geometric Versions for Graphs and Manifolds

o Similar theoretical guarantees to the Euclidean scattering
transform

o Wavelets can be constructed either spatially or spectrally
o Can be incorporated in hybrid Scattering - GCN networks

@ The graph scattering transform can be used to synthesize
molecules as part of the GRASSY framework
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THANK YOU!

Geometric Scattering



