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Transformer and GNN

» Fully-connection

Weights «a;; are generated

dynamically with attention
mechanism

Fudan NLP Lab 3



Graph Views of Transformers
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Self-attention as Complete Graph

* Complexity : ©(N?)

* Reduce complexity ----> Reduce the
number of edges
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Star-Transformer

* Reduce Complexity to O(N).

* Preserve the capacity to capture
both local composition and long-
range dependency.




Star-Transformer
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Empirical Sparse Transformers

q q q q

(a) Star-Transformer (b) Longformer (c) ETC (d) BigBird

Lin, T., Wang, Y., Liu, X., and Qiu, X. A survey of transformers, 2021
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Sparse Transformer: A Graph View

"

* Which property is important for those graphs serving as
ground for self-attention?

* How dense do we need the graph to be in order to reduce
complexity and at the same time remain performance?
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Two views of a graph

» Computational Complexity (CC)

» Computational Complexity is the computation complexity required to allow the model
to grab all interactions among tokens when using graph G for self-attention.

» For complete graph, it's N.

» Information Payload (IP)

» Information Payload. measuring how much information a graph can transfer when
allowing the model to grab all interactions among tokens.

» For complete graph, it's ﬁ

» To better compare information transfer on different graphs, we define the
Normalized Information Payload (NIP)

NIP(G) := —
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Computational Complexity

» K(G)

» Given a G-attention layer, to make the whole model grab all interactions among tokens, we
need to stack k(G) G-attention layers.

» Straightforwardly, k(G) is the diameter of graph G.
» For complete graph, it’s 1.

» p(G)
» For one G-attention layer, when the input sequence is fixed at length N, the Computational
Complexity for one layer is proportional to the mean degree of G.

., N-1
» For complete graph, it’s —

COlG) = pl) % BG)-
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Information Payload
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Definition 2.2. For one path Py, € Pgyp, the Information
Payload of one path P, denoted by R(F,;) , is defined as

R(Py,,) := H !

deqg(v)
ve P, & v#a j( )

Definition 2.3. The Information Payload between node pair
(a,b), denoted by I, is sum of Information Payload of all
paths that belong to Py :

L= Y  R(Pu).
I

’abEPub




Closely related to Random Walk

Theorem 2.4. Information Payload between two nodes 1,
equals to the probability of a random walk starts from node
b that ends in node a at step len(Pyy).

LO Ll Lt—l Li Lt—l

"
O @
J

Attention forward Random walk
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Information Payload
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Definition 2.5. The Information Payload for a graph G
IP(G) is the smallest Information Payload [,;, between node
pairs (a, b) whose distance is the diameter of the graph. Let
A be the set of node pairs whose distance is the diameter of
the graph, we have

IP(G) := min Ig. (5)
(a,b)eA




Normalized Information Payload (NIP)

Table 1. Normalized Information Payload for commonly used graphs, where w is the number of neighbors in ring lattice.

Type of graph CC(G) | IP(G) 1 MRS 1
Complete O(N) o (x) © (57)

E-R random @(log2 N) © (Nlog 15/]:[]\_[3)1|og N)!) = ( (Nfgl?’y"(ﬁ;;(()ij)\r)! )
Tree ©(log N) G(W) © (Nlog(Ql) log N
Star o(1) @(%) @(%)

Ring lattice

+ E-R random
Ring lattice

+ Star (Longformer)
Ring lattice

+ Star

+ E-R random (BigBird)

O(log N(log N +w)) © <(N+

O(w)

©(log N + w)

(N—2)!

S|

w
log

© (~w)

1

N (log N 4+w)

)

~)'°8 N (N —log N)!

)

o (N—-2)!/(N—log N)!
(N+ ooy ylog N log N (log N +w)

© (§w7)

1
© (N(logN+w)2)
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Case Study

» Star Graph.

» Extremely high NIP but limited performance in real-world tasks. Probably due to
information interference through one global node.

» E-R random.

» For the E-R random graph used in BigBird, if the probability of every edge to existis p, the

(1+6)mN. We use the lower bound

E-R random graph is highly possibly connected if p >
logN

and setp =

» Ring Lattice.
» Commonly used for grabbing local information but poor NIP.
» Longformer and Bigbird.

» Random graph not necessarily make Bigbird have larger NIP than Longformer.
Counterintuitive but reasonable, and fit Bigbird’s experiments.
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How to design sparse graph with high NIP

» Complete graph : the shortest distance between two neighbors’
neighbors (excluding two nodes themselves) equals to zero, meaning
that every two neighbor has the same neighbor.

» Unknown graph: the shortest distance between two neighbors’
neighbors (excluding two nodes themselves) equals to one. Much sparser
while maintaining the connectivity of the graph.

» This Unknown graph is Hypercube.
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Normalized Information

Table 1. Normalized |

Type of graph

Complete
E-R random
Tree

Star

Ring lattice

+ E-R random
Ring lattice

+ Star (Longformer)
Ring lattice

+ Star

+ E-R random (BigBird)

Hypercube
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Figure 2. NIP(() for graphs divided by complete graph in Table 1.

We do not include star graph and ring lattice in this Figure because
NIP(() for star graph is too large. The w used for ring lattice is
set to % according to Longformer at length 4096.

er of neighbors in ring lattice.

NIP(G) 1
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Hypercube Transformer mapping

Algorithm 1 Binary representation of sequences

cron amid Input: sequence S = (so, ..., sn—1)
001 011 Output: Binary representation XV = XoX; X5...X;...Xn_1
il E e lnmal:ze X =({0;1)
; . repea
101 % 111 Y — ()
; for i in X do
: Y.append(i << 1)
 she tears end for
: 000 for i in reversed X do
> Y.append(i << 1+ 1)
end for
stood in Unpack X =¥
until len(X) >= N
Output: XV = X[: N]
she stood in tears amid the alien cron If the dimension of binary numbers is k., the final bi-
000 011 111 101 001 nary representation for token with index i (X; :=
XF1x52 . X1X9,i € [0,N — 1)) is given by
Figure 5. Unpacking a hypercube to a sequence. Tokens that are d i mod 2F—d+1 i mod 2F—d .
neighbors in hypercube are also neighbors in a sequence. Xi = (l ok—d gl ok—d—1 J) mod 2,

(6)
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Hypercube Transformer mapping

she stood she stood m tears she stood in tears she stood in tears amid th(‘ ,]]1(‘11 cron \ll(‘ stood in tears amid the alien cron
0 1 0 1 1 00 10 11 01 00 10 11 01 01 11 1 00 100 110 010 011 111 101 001

(a)N=2 (b)N = 4 (c) =8

Figure 4. Iteratively mapping a sequence to a hypercube and its attention mask. Figure (a), (b) and (c) is the attention map for input
sequences with length N = 2,4, 8 respectively.
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Long-Range-Arena

Graph
#Length

Complete

Star

Ring lattice + E-R random
Ring lattice + Star (Longfc
Ring lattice + Star + E-R r;

Hypercube
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Iable 2. Performances for different graphs on Long-Range Arena
Avg. NIP((i) SpeedUp
Hypercube_»
62.0
5 60.67 | x 1 %
Sols 5995 _ _
=
g 59.69 1.43¢ '"x -
g 610§ 60.00 8.25¢ *x -
& s 59.99 7.21e *x -
560,51
0 62.07 4.85x 15.8%
60.0- p Ring lattice + Star (Longformer)

Ring lattice+ Star+ Random (Bigbird)
* Ring lattice + Random

0 1 2 3 4 5
NIP(G)

Figure 6. Average performance on the LRA benchmark can have
strong proposition with our proposed Normalized Information
Payload.




Block Sparsity

Theorem 3.1. For block size b < % larger block size makes
star graph and hypercube have less Normalized Information

Payload.

Table 3. Performance of Hypercube Transformer with different

block sizes.
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Hypercube Retrieval Image
Block size 16 81.16 53.79
Block size 32 80.74 51.98
Block size 64 80.75 50.75




Pretraining and Finetuning on longer contexts
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Table 5. Finetuning MLM on Wikitext103.

Model Loss Speedup
BERT 98 1.18 5
CubeBERT 28 1.05 1.4x
5
—— BERT
CubeBERT 54
4
V
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=
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2
l‘ - ~ aan ’ - - - - ~ ~
0 5000 10000 15000 20000 25000 30000 35000 40000

Steps

Figure 7. CubeBERT 28 shows faster dropping rate of eval loss
than BERT128 when finetuning on Wikitext103.



Pretraining and Finetuning on GLUE

Table 6. Performances on GLUE test sets. For our implementation, results for RTE, STS and MRPC are reported by first finetuning on the
MNLI model instead of the baseline pretrained model.

MNLI-m/mm QNLI QQP RTE SST-2 MRPC CoLA STS-B Avg. Speedup
#metric Acc Acc  F1 Acc Acc F1 ~ Matthew’s corr. Spearman corr.
#Examples 393k 105k 364k 2.5k 67k 3.7k 8.5k 7k
BERT 86.0/85.2 926 720 783 945 899 60.9 87.5 83.0 1 x
BERT 125 84.9/84.8 91.1 71.0 76.6 93.1 904 58.0 88.3 82.0 1 x
CubeBERT 128  85.9/85.0 90.8 71.3 77.1 953 864 61.5 87.6 82.3 1.1x
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Open Questions

» How to quantify the Information Interference of one node?

» Attention weights change with training, making the distribution not uniform.
How to model the distribution of attention weights?

» However, from analysis of BERT, some attention heads, especially in lower layers, have
very broad attention, which means the uniform distribution assumption reasonable
somehow.
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Thank you for listening!
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