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The Vanilla Transformer

Vaswani, Ashish, et al. "Attention is All you Need." NIPS. 2017.
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Transformer and GNN

 Transformer is a model built with self-attention module.

 Fully-connection

Weights 𝛼𝑖𝑗 are generated 

dynamically with attention 
mechanism
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Graph Views of Transformers

 Transformer is a model built with self-attention module.
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Contents

• Sparsification of self-attention

• Normalized Information Payload(NIP)

• Hypercube Transformer

• Experiments
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Self-attention as Complete Graph

• Complexity : Θ(N2)

• Reduce complexity ----> Reduce the 
number of edges
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Star-Transformer

Qipeng Guo, Xipeng Qiu, Pengfei Liu, Yunfan Shao, Xiangyang Xue, Zheng Zhang. Star-Transformer, NAACL 2019, 

https://arxiv.org/pdf/1902.09113.pdf

• Reduce Complexity to Θ(N).

• Preserve the capacity to capture 
both local composition and long-
range dependency.
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Star-Transformer
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Empirical Sparse Transformers

Lin, T., Wang, Y., Liu, X., and Qiu, X. A survey of transformers, 2021
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Sparse Transformer: A Graph View

• Which property is important for those graphs serving as 
ground for self-attention? 

• How dense do we need the graph to be in order to reduce 
complexity and at the same time remain performance?
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Two views of a graph

 Computational Complexity (CC)

 Computational Complexity is the computation complexity required to allow the model 

to grab all interactions among tokens when using graph G for self-attention.

 For complete graph, it’s N.

 Information Payload (IP)

 Information Payload. measuring how much information a graph can transfer when 

allowing the model to grab all interactions among tokens.

 For complete graph, it’s 
1

𝑁−1
.

 To better compare information transfer on different graphs, we define the 
Normalized Information Payload (NIP)
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Computational Complexity

 κ(G)

 Given a G-attention layer, to make the whole model grab all interactions among tokens, we 
need to stack κ(G) G-attention layers.

 Straightforwardly, κ(G) is the diameter of graph G. 

 For complete graph, it’s 1.

 ρ(G)

 For one G-attention layer, when the input sequence is fixed at length N, the Computational 
Complexity for one layer is proportional to the mean degree of G.

 For complete graph, it’s 
𝑁−1

2
.
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Information Payload



15Fudan NLP Lab

Closely related to Random Walk

Attention forward Random walk
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Information Payload
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Normalized Information Payload (NIP)
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Case Study

 Star Graph.

 Extremely high NIP but limited performance in real-world tasks. Probably due to 
information interference through one global node.

 E-R random.

 For the E-R random graph used in BigBird, if the probability of every edge to exist is 𝑝, the 

E-R random graph is highly possibly connected if 𝑝 >
1+𝜖 𝑙𝑛𝑁

𝑁
. We use the lower bound 

and set 𝑝 =
𝑙𝑜𝑔𝑁

𝑁
.

 Ring Lattice.

 Commonly used for grabbing local information but poor NIP.

 Longformer and Bigbird.

 Random graph not necessarily make Bigbird have larger NIP than Longformer. 
Counterintuitive but reasonable, and fit Bigbird’s experiments.



19Fudan NLP Lab

Contents

• Sparsification of self-attention

• Normalized Information Payload(NIP)

• Hypercube Transformer

• Experiments



20Fudan NLP Lab

How to design sparse graph with high NIP

 Complete graph : the shortest distance between two neighbors’ 
neighbors (excluding two nodes themselves) equals to zero, meaning 
that every two neighbor has the same neighbor.

 Unknown graph: the shortest distance between two neighbors’ 
neighbors (excluding two nodes themselves) equals to one. Much sparser 
while maintaining the connectivity of the graph.

 This Unknown graph is Hypercube.
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Normalized Information Payload (NIP)
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Hypercube Transformer mapping
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Hypercube Transformer mapping
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Long-Range-Arena
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Block Sparsity
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Pretraining and Finetuning on longer contexts
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Pretraining and Finetuning on GLUE
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Open Questions

 How to quantify the Information Interference of one node?

 Attention weights change with training, making the distribution not uniform. 
How to model the distribution of attention weights?

 However, from analysis of BERT, some attention heads, especially in lower layers, have 
very broad attention, which means the uniform distribution assumption reasonable 
somehow.
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Thank you for listening!


