Will Graphs Lead to the Next Breakthrough of Conversational AI?

Yu Su
The Ohio State University
Microsoft Semantic Machines

A Bit About Me

■ Been working on knowledge graphs since 2014

- Construction, querying, and reasoning
- Been working on conversational AI since 2015
- Semantic parsing, task-oriented dialogue, question answering, embodied instruction following

■ Been working at Microsoft Semantic Machines since 2018 and helped develop a new conversational interface for Outlook

■ Won the $3^{\text {rd }}$ place in the inaugural Amazon Alexa Prize Taskbot Challenge

Natural Language is the Universal Interface
< yahoo!

Easier Said Than Done

Dad Suggests Arriving At Airport 14 Hours

 Early

FITnirce

US airlines are bracing customers for what will probably be another bumpy holiday weekend as the industry struggles to manage a surge in travel demand that probably exceeds its current capacity.

> Yu Su, a computer science professor at Ohio State University, was stranded last Saturday night in Charlotte, North Carolina after his connecting flight home never left.

The airline didn't cancel the 8:30 pm flight until around midnight after numerous delays that created "the delusion of hope," said Yu, who never got a clear explanation for the problem.

Easier Said Than Done

When is my flight to Seattle?

How long will it take to get to the airport?

Book a Uber 1.5 hours before that.

Any good Chinese restaurants close to my hotel?

Tomorrow at 5:00 pm.

It will take 20 minutes according to Google Maps.

Sure. Booked a Uber for 3:30 pm tomorrow to the Columbus airport.

According to Yelp, Haidilao has 4.5 stars and is 2-min walk from Hyatt.

Standard Approaches to Language Interfaces

Standard Approach: Intents and Slots

Proposition:

The world where conversational AI agents are grounded is inherently structured and interconnected, so graphs should be an integral part of conversational Al.

How Graphs May Help?

Broad-Coverage Meaning Representation

Task-Oriented Dialogue as Dataflow Synthesis

Semantic Machines, Jacob Andreas, John Bufe, David Burkett, Charles Chen, Josh Clausman, Jean Crawford, Kate Crim, Jordan DeLoach, Leah Dorner, Jason Eisner, Hao Fang, Alan Guo, David Hall, Kristin Hayes, Kellie Hill, Diana Ho, Wendy Iwaszuk, Smriti Jha, Dan Klein, Jayant Krishnamurthy, Theo Lanman, Percy Liang, Christopher H Lin, Ilya Lintsbakh, Andy McGovern, Aleksandr Nisnevich, Adam Pauls, Dmitrij Petters, Brent Read, Dan Roth, Subhro Roy, Jesse Rusak, Beth Short, Div Slomin, Ben Snyder, Stephon Striplin, Yu Su, Zachary Tellman, Sam Thomson, Andrei Vorobev, Izabela Witoszko, Jason Wolfe, Abby Wray, Yuchen Zhang, Alexander Zotov

SM View: Contextual Program Synthesis

What time am I getting coffee with Megan?

12:30 PM

How long will it take to get there?

Five Key Ideas

1. Dialogs are programs (program synthesis)
2. Complex tasks are built from simpler ones (compositionality)
3. Meanings depend on context (metacomputation)
4. Things will go wrong (exception handling)
5. Systems should tell the truth (dynamic grounded generation)

Idea 1: Dialog as Program Synthesis

Dialogue as Program Synthesis: Intents and Slots

Dialogue as Program Synthesis: General Programs

What time am I getting coffee with Megan?

```
[p] = find_person(name: like("Megan"))
[e] = find_event(
    subject: like("coffee"),
    attendees: includes([p])))
describe([e].start.time)
```


Dialogue as Program Synthesis: General Programs

What time am I getting coffee with Megan?

```
[p] = find_person(name: like("Megan"))
[e] = find_event(
    subject: like("coffee"),
    attendees: includes([p])))
describe([e].start.time)
```


Idea 2: Complex Tasks via Compositionality

Compositionality: Within a Turn

What's the temperature going to be for my coffee with Megan?

```
[p] = find_person(name: like("Megan"))
[e] = find_event(
    subject: like("coffee"),
    attendees: includes([p])))
[l] = geocode([e].location)
[w] = weather_forecast(
    locatio%: [l]
    time: [e].start.time)
describe([w].temperature)
```


Dataflow

```
[p] = find_person(name: like("Megan"))
[e] = find_event(
    subject: like("coffee"),
    attendees: includes([p])))
[l] = geocode([e].location)
[w] = weather_forecast(
    locatio: [l]
    time: [e].start.time)
describe([w].temperature)
```


Compositionality: Multi-Turn

Dataflow

```
[p] = find_person(name: like("Megan"))
[e] = find_event(
    subject: like("coffee"),
    attendees: includes([p])))
de:scribe([e].start.time)
[l] = geocode([e].location)
[w] = weather_forecast(
    location: [l]
    time: [e].start.time)
describe([w].temperature)
```


Idea 3: Meanings Depend on Context

Context through Metacomputation: Reference

What will the weather be like?
When's my coffee with Megan?
12:30 PM

What will the weather be like?


```
weather_forecast(
```

weather_forecast(
location: here(),
location: here(),
time: now()
time: now()
)

```
)
```

 weather_forecast(
 location: [e].location,
 time: [e].time
)

Context through Metacomputation: Reference

Context through Metacomputation: Revision

Do I have any meetings today?	```[d] = today() [e] = find_event(start.date: [d]) describe([e])```
No	
What about tomorrow?	```[d2] = tomorrow() [e2] = find_event(start.date: [d2]) describe([e2])```

> What's the weather going to be like during my third meeting today?

```
Cloudy
```

What about tomorrow?

Context through Metacomputation: Revision

Idea 4: Things Will Go Wrong

Exception Handling

Disambiguation, Confirmation, Missing Slots, API Errors, ...

Set up a meeting with Megan

```
[p] = find_person(
    name: like("Megan"))
[e] = create_event(
    attendees: includes([p]))
Except: MultipleMatchesFound([p])
Except: NoMatchFound([p])
Except: APIError([e])
Except: MissingSlot([e])
```

```
Except: MultipleMatchesFound([p])
```

Did you mean Megan Bowen?

Idea 5: Truthful Generation

Grounded vs. Ungrounded Generation

Dynamic Grounded Generation

Demo

How Graphs May Help?

Broad-Coverage Meaning Representation

Beyond I.I.D.: Three Levels of Generalization for Question Answering on Knowledge Bases

Yu Gu

Brian Sadler

w/ Sue Kase and Michelle Vanni

Universal Interface Needs Broad-Coverage Meaning Representation

Large-Scale Knowledge Graphs as a Testbed

Modern knowledge graphs/bases (KGs/KBs) are extremely large and broad

- Freebase: 100 domains, 19,000 relations, 45 million entities, and 3 billion facts
- Google Knowledge Graph: 5 billion entities and 500 billion facts (as of 2020) ${ }^{1}$

New Challenges for Broad-Coverage Conversational AI

Question answering on large-scale KGs reveals (new) challenges for developing broad-coverage conversational AI

Large
 Search Space

Semantic Ambiguities

Large Search Space

Which American actor has got the most Oscars nominations?

Non-I.I.D. Generalization

Practical KBQA models should be built with non-i.i.d. generalizability

Training Data
Who is the producer of Spamalot?
(AND Theater_Producer (JOIN (R producer) Spamalot))
How many plays has Bob Boyett produced?
(COUNT (AND Theater_Production
(JOIN producer Bob_Boyett))

- Find plays that were staged in large theaters that could hold at least 20,000 people.
(AND Theater_Production
(JOIN (R staged_here) (JOIN (GE capacity 20000)))

Non-I.I.D. Generalization

Practical KBQA models should be built with non-i.i.d. generalizability

Training Data

- Who is the producer of Spamalot?
(AND Theater_Producer (JOIN (R producer) Spamalot))
- How many plays has Bob Boyett produced?
(COUNT (AND Theater_Production
(JOIN producer Bob_Boyett))
- Find plays that were staged in large theaters that could hold at least 20,000 people.
(AND Theater_Production
(JOIN (R staged_here) (JOIN (GE capacity 20000)))

I.I.D. Generalization

- How many theater productions has Oprah produced? (COUNT (AND Theater_Production (JOIN producer Oprah_Winfrey))

Non-I.I.D. Generalization

Practical KBQA models should be built with non-i.i.d. generalizability

- Who is the producer of Spamalot?
(AND Theater_Producer (JOIN (R producer) Spamalot))
- How many plays has Bob Boyett produced?
(COUNT (AND Theater_Production
(JOIN producer Bob_Boyett))
- Find plays that were staged in large theaters that could
hold at least 20,000 people.
(AND Theater_Production
(JOIN (R staged_here) (JOIN (GE capacity 20000)))

Non-I.I.D. Generalization

Practical KBQA models should be built with non-i.i.d. generalizability

- Who is the producer of Spamalot?
(AND Theater_Producer (JOIN (R producer) Spamalot))
- How many plays has Bob Boyett produced?
(COUNT (AND Theater_Production
(JOIN producer Bob_Boyett))
- Find plays that were staged in large theaters that could
hold at least 20,000 people.
(AND Theater_Production
(JOIN (R staged_here) (JOIN (GE capacity 20000)))

I.I.D. Generalization

- How many theater productions has Oprah produced? (COUNT (AND Theater_Production (JOIN producer Oprah_Winfrey))

Compositional Generalization

Bob Boyett's production was housed in what theater capable of holding at least 10,000 people?
(AND Theater (AND (GE capacity 10000)
(JOIN staged_here (JOIN producer Bob_Boyett)))

Zero-Shot Generalization

- How many TV programs has Bob Boyett created?
(COUNT (AND TV_Program (JOIN (R program_created) Bob_Boyett))

Semantic Ambiguities

Flaminia Brasini was the designer of what game?

Q: This question is referring to the relation of
a. computer.computer.key_designers
b. sports.golf_course.designer
c games.game.designer

Prior Work on KBQA

EMNLP'13

Semantic Parsing on Freebase from Question-Answer Pairs
\square Mostly focusing on i.i.d.

■ Small scale (w.r.t. size, coverage, or diversity)
The Web as a

Alon Talmor

Tel-Aviv University
alontalmoremail.tau.ac.il

LC-QuAD 2.0: A Large Dataset for Complex Question Answering over Wikidata and DBpedia

Mohnish Dubey ${ }^{1,2}$, Debayan Banerjee ${ }^{1,2}$, Abdelrahman Abdelkawi ${ }^{2,3}$, and Jens Lehmann ${ }^{1,2}$

[^0]
GrailQA: First Dataset for Strongly Generalizable KBQA

64,495 questions, 86 domains, 3,720 relations, 32,585 entities
Support three levels of generalization: i.i.i.d, compositional, and zero-shot

Question	Domain	Answer	\# of Relations	Function
Beats of Rage is a series of games made for which platform?	Computer Video Game	DOS	1	none
Which tropical cyclone has affected Palau and part of Hong Kong?	Location, Meteorology	Typhoon Sanba	3	none
Marc Bulger had the most yards rushing in what season?	Sports, American Football	2008 NFL Season	3	superlative
How many titles from Netflix have the same genre as The Big Hustle?	Media Common	20,104	2	count
What bipropellant rocket engine has less than 3 chambers?	Spaceflight	RD-114	1	comparative

[^1]
What is GrailQA?

Strongly Generalizable Question Answering (GrailQA) is a new large-scale, high-quality dataset for question answering on knowledge bases (KBQA) on Freebase with 64,331 questions annotated with both answers and 64,331 questions annotated with both answers and
corresponding logical forms in different syntax (i.e., corresponding logical forms in different syntax (i.e., SPARQL, S -expression, etc.). It can be used to test three levels of generalization in KBQA: i.i.d., compositional, and
zero-shot. zero-shot.

Why GrailQA?

GrailQA is by far the largest crowdsourced KBQA dataset with questions of high diversity (i.e., questions in GrailQA can have up to 4 relations and optionally have a function from counting, superlatives and comparatives). It also has the highest coverage over Freebase; it widely covers 3,720 relations and 86 domains from Freebase. Last but not least. our meticulous data solit allows GrailOA to test

Leaderboard: Overall

Here are the overall Exact Match (EM) and F1 scores evaluated on GrailQA test set. To get the EM score on GrailQA, please submit your results with logical forms in S expression. Note that, submissions are ranked only based on F1, so feel free to choose your own meaning representation as EM won't affect your ranking.

Lessons Learned So Far

Zero-Shot Generalization

Lessons Learned So Far

- Simple transductive parsing (Seq2Seq or Seq2Graph) is unlikely to suffice

Zero-Shot Generalization

```
80
70
6 0
5 0
ᄀ
30

\section*{Lessons Learned So Far}
- Simple transductive parsing (Seq2Seq or Seq2Graph) is unlikely to suffice
- Joint utterance-schema encoding is critical for schema linking

\author{
Zero-Shot Generalization
}
```

80
70
6 0
50
ᄀ
30

Lessons Learned So Far

- Simple transductive parsing (Seq2Seq or Seq2Graph) is unlikely to suffice
- Joint utterance-schema encoding is critical for schema linking
- Grounded generation/search can go a long way

Zero-Shot Generalization

Lessons Learned So Far

- Simple transductive parsing (Seq2Seq or Seq2Graph) is unlikely to suffice
- Joint utterance-schema encoding is critical for schema linking
- Grounded generation/search can go a long way
- Zero-shot generalization is possible!

Zero-Shot Generalization

Recap

The world where conversational AI agents are grounded is inherently structured and interconnected, so graphs should be an integral part of conversational Al.

Dialogue as Dataflow Graph

What's the temperature going to be for my coffee with Megan?

Broad-Coverage Meaning Representation

Interesting Future Directions

- Reconciling dataflow graphs and knowledge graphs
- Graph neural networks for context modeling
- Data collection, sample efficiency, learning from use
- Foundation models for graph-based conversational AI

Thanks \&

[^0]: ${ }^{1}$ Smart Data Analytics Group (SDA), University of Bonn, Germany

[^1]: Gu et al. Beyond I.I.D.: Three Levels of Generalization for Question Answering on Knowledge Bases. The Web Conference, 2021

